Notes from the artist

I'm hoping this book will expose younger students to concepts they normally wouldn't see until higher grades.

And that it will give advanced students some new views of concepts they're already familiar with.

Thank you to Steven Pietrobon for his many helpful comments. Also to Isaac Kuo for his suggestion.

They've helped me make this a better book. Any mistakes in this book are my own.

Hollister (Hop) David

Table of Contents

Conics in terms of distance from directrix and focus	Two kinds of rulers	2 &	kЗ
Cut Cones Parabola, Circle, Ellipse, Hyperbola. Cone of light: circle, ellipse, parabola. Scone of light: circle, ellipse, parabola. Scone of light: hyperbola. Sconics in terms of distance from two foci. Conics in terms of distance from two foci. Astronomical Units, Hohmann transfer orbit. 13 Astronomical Units, Hohmann transfer orbit. 14 Secretic and ellipse: a, b, & ea. 15 Eccentricity ellipse. 16 Eccentricity ellipse. 17 Experis 2 and Law. 18 Expecific angular momentum, cross product of position and velocity vectors. 18 Expecific angular momentum, cross product of position and velocity vectors. 19 Expecific angular momentum, cross product of position and velocity vectors. 19 Expecific angular momentum. 10 the second Power Squaring. 10 the third Power Cubing. 11 To the second Power Squaring. 12 Centrifugal acceleration. 23 Corbital periods in years in terms of distance from sun. 24 Area of circle. 25 Ellipse's a, ea & b as legs and hypotenuse of right triangle. 26 Ellipse's a, ea & b as legs and hypotenuse of right triangle. 27 Radians. 28 Velocity circular motion is w * radius. 29 Earth centered canonical units. 30 Gravity gradient stabilized vertical tethers (a.k.a. Sarmount sky hooks). 31 Earth centered canonical units. 32 Faro Relative Velocity Transfer Orbits (ZRVTOs). 33 Dandelin spheres ellipse from cut cones in terms of distance from foci. 37 , 38, 38 Dandelin spheres ellipse from cut cones in terms of distance from foci. 37 , 38, 38 Dandelin spheres ellipse from cut cones in terms of distance from foci. 37 , 38, 38 Dandelin spheres ellipse from cut cones in terms of distance from foci. 37 , 38, 39 Dandelin spheres ellipse from cut cones in terms of distance from foci. 37 , 38, 39 Dandelin spheres ellipse from cut cones in terms of distance from foci. 37 , 38, 39 Dandelin spheres ellipse from cut cones in terms of distance from foci. 37 , 38, 39 Dandelin spheres ellipse from cut cones in terms of distance from foci. 37 , 38, 39 Dandelin spheres ellipse fr	Conics in terms of distance from directrix and focus	4, 5 &	k 6
Cone of light: circle, ellipse, parabola. Cone of light: hyperbola Cone of light: hyperbola Sonics in terms of distance from two foci Conics in terms of distance from two foci Conics in terms of distance from two foci Conics in terms of distance from two foci Soperific angular momentum, cross product of position and velocity vectors Itecentricity ellipse Kepler's 2nd Law Specific angular momentum, cross product of position and velocity vectors To specific angular momentum, cross product of position and velocity vectors To the second Power Squaring To the third Power Cubing Ptyhagorean Theorem Contrifugal acceleration Contrifugal acceleration Contrifugal acceleration Contrifugal acceleration Corbital periods in years in terms of distance from sun Area of a circle Ellipse's a, ea & b as legs and hypotenuse of right triangle Area ellipse Corbital periods in years in terms of distance from sun Corbital periods in years in terms of distance from sun Corbital periods in years in terms of distance from sun Corbital periods in years in terms of distance from sun Corbital periods in years in terms of distance from sun Corbital periods in years in terms of distance from sun Corbital periods in years in terms of distance from sun Corbital periods in years in terms of distance from sun Corbital periods in years in terms of distance from sun Corbital periods in years in terms of distance from sun Corbital periods in years in terms of distance from sun Corbital periods in years in terms of distance from foci as directrix Corbital periods in terms of distance from sun Corbital periods in years in terms of distance from foci as directrix Corbital periods in terms of distance from sun Corbital periods in terms of distance from foci as directrix Corbital periods can bust up the exponent in the rocket equation Corbital periods and bust up the exponent in the rocket equation Corbital periods and bust up the exponent in the rocket equation Corbital periods and bust up the exponent in	Cut Cones Parabola, Circle, Ellipse, Hyperbola	•	7
Cone of light: hyperbola	Cone of light: circle, ellipse, parabola		8
Conics in terms of distance from two foci 10 & 11			
Kepler's 1st Law	Conics in terms of distance from two foci	10 &	11
Astronomical Units, Hohmann transfer orbit. 15 Parts of an ellipse: a, b, & ea			
Parts of an ellipse: a, b, & ea	Astronomical Units Hohmann transfer orbit		13
Eccentricity ellipse			
Kepler's 2nd Law	Fccentricity ellipse		15
Specific angular momentum, cross product of position and velocity vectors. I7 Kepler's 2nd Law & Specific Angular Momentum To the second Power Squaring. To the second Power Squaring. 15 To the second Power Cubing. Ptyhagorean Theorem. 26 Centrifugal acceleration. 27 Gravity and Kepler's Third Law. 28 Gravity and Kepler's Third Law. 29 Orbital periods in years in terms of distance from sun. Area of a circle. 21 Ellipse's a, ea & b as legs and hypotenuse of right triangle. 26 Area ellipse. 27 Radians. 28 Velocity circular motion is w * radius. 29 Earth centered canonical units. 30 Gravity gradient stabilized vertical tethers (a.k.a. Sarmount sky hooks). 31 Rayload paths when released from different points of a vertical tower. 32 Jacoba Positive Velocity Transfer Orbits (ZRVTOs). 33 Dandelin Spheres. 34 Senadelin spheres ellipse from cut cones in terms of distance from foci. 37 Jas. 38 Senadelin spheres ellipse from cut cones in terms of distance from foci. 37 Jas. 38 Senadelin spheres ellipse from cut cones in terms of distance from foci. 37 Jas. 39 Circle in cartesian coordinates. 42 VInfinity. V Hyperbola, V Escape, V Circular. 44 VInfinity And Hohmann Transfers. 45 VInfinity, V Hyperbola, V Escape, V Circular. 46 Parats Of A Hyperbola. 47 Mu (µ)	Kepler's 2nd I aw		16
Kepler's 2nd Law & Specific Angular Momentum 18 To the second Power Squaring 19 To the third Power Cubing 20 Ptyhagorean Theorem 21 Centrifugal acceleration 22 Gravity and Kepler's Third Law 23 Orbital periods in years in terms of distance from sun 24 Area of a circle 25 Elipse's a, ea & b as legs and hypotenuse of right triangle 26 Area ellipse 27 Radians 28 Velocity circular motion is w * radius 25 Earth centered canonical units 25 Gravity gradient stabilized vertical tethers (a.k.a. Sarmount sky hooks) 30 Agyload paths when released from different points of a vertical tower 32 3Zero Relative Velocity Transfer Orbits (ZRVTOs) 34 3E Dandelin Spheres ellipse from cut cones in terms of distance from foci 37 3B Dandelin spheres ellipse from cut cones in terms of distance from foci 47 4Crabola in terms of distance from an x and y axis, cartesian coordinates 41 4V Infinity 44 V Infinity 44 V Infinity 47 V Infinity	Specific angular momentum, cross product of position and velocity vectors	•••••••	17
To the second Power Squaring	Kenler's 2nd Law & Specific Angular Momentum	••••••	18
To the third Power Cubing	To the second Power Squaring	••••••	19
Pryhagorean Theorem	To the third Power Cubina		20
Centrifugal acceleration			
Gravity and Kepler's Third Law Orbital periods in years in terms of distance from sun	Centrifued acceleration		22
Orbital periods in years in terms of distance from sun			
Area of a circle	Orbital pariods in years in terms of distance from sun		24
Ellipse's a, ea & b as legs and hypotenuse of right triangle	Area of a circle		25 25
Area ellipse	Flings's a safe has loss and hypotonius of night triangle		26
Radians	Anno allingo		27
Velocity circular motion is w * radius			
Earth centered canonical units	Kaalaris		20
Gravity gradient stabilized vertical tethers (a.k.a. Sarmount sky hooks) Payload paths when released from different points of a vertical tower 32, 33 Zero Relative Velocity Transfer Orbits (ZRVTOs) 34, 35 Dandelin Spheres 36 Dandelin spheres ellipse from cut cones in terms of distance from foci 37, 38, 39 Dandelin spheres ellipse from cut cones in terms of distance from foci & directrix 40 Parabola in terms of distance from an x and y axis, cartesian coordinates 41, 42 Circle in cartesian coordinates 43 V Infinity 40 V Infinity And Hohmann Transfers 45 V Infinity, V Hyperbola, V Escape, V Circular 46 Parts Of A Hyperbola 47 Mu (µ) 48 Oberth benefit 55 Rocket equation 55 Rocket equation, delta V and mass fraction 55 Rocket equation, delta V and mass fraction 55 Propellent depots can bust up the exponent in the rocket equation 54 Dynamic pressure and max Q 55 Gravity loss during ascent, Thrust to Weight ratio (T/W) 55 Thrust vs exhaust velocity 57 What's a millinewton? What's acceleration? 58 The need for a better alpha 59 The need for a better alpha 59 The need for a better alpha 59 The ion tortoise vs the chemical hare 59 Sun's gravity well and atomic rockets 50 Cartoon delta V map 63 Websites and books of interest 64			
Payload paths when released from different points of a vertical tower	Carth centered canonical units		3U
Zero Relative Velocity Transfer Orbits (ZRVTOs)	Gravity gradient stabilized vertical tetners (a.K.a. Sarmount sky nooks)		31
Dandelin Spheres	rayload paths when released from different points of a vertical tower	32,	33
Dandelin spheres ellipse from cut cones in terms of distance from foci			
Dandelin spheres ellipse from cut cones in terms of distance from foci & directrix	Dandelin Spheres		36
Parabola in terms of distance from an x and y axis, cartesian coordinates 41, 42 Circle in cartesian coordinates 43 V Infinity 44 V Infinity And Hohmann Transfers 45 V Infinity, V Hyperbola, V Escape, V Circular 46 Parts Of A Hyperbola 47 Mu (μ) 48 Oberth benefit 49, 50 Farquhar route, EML2 51 Rocket equation 52 Rocket equation, delta V and mass fraction 53 Propellent depots can bust up the exponent in the rocket equation 54 Dynamic pressure and max Q 55 Gravity loss during ascent, Thrust to Weight ratio (T/W) 56 Thrust vs exhaust velocity 57 What's a millinewton? What's acceleration? 58 The need for a better alpha 59 The ion tortoise vs the chemical hare 60 Sun's gravity well and atomic rockets 61 Potential propellent sources 62 Cartoon delta V map 63 Websites and books of interest 64			
Circle in cartesian coordinates	Dandelin spheres ellipse from cut cones in terms of distance from foci & direc	trix4	40
V Infinity — 44 V Infinity And Hohmann Transfers — 45 V Infinity, V Hyperbola, V Escape, V Circular — 46 Parts Of A Hyperbola — 47 Mu (μ) — 48 Oberth benefit — 49, 50 Farquhar route, EML2 — 51 Rocket equation — 52 Rocket equation — 52 Rocket equation, delta V and mass fraction — 53 Propellent depots can bust up the exponent in the rocket equation — 54 Dynamic pressure and max Q — 55 Gravity loss during ascent, Thrust to Weight ratio (T/W) — 56 Thrust vs exhaust velocity — 57 What's a millinewton? What's acceleration? — 58 The need for a better alpha — 59 The ion tortoise vs the chemical hare — 60 Sun's gravity well and atomic rockets — 61 Potential propellent sources — 62 Cartoon delta V map — 63 Websites and books of interest — 64	Parabola in terms of distance from an x and y axis, cartesian coordinates	41, 4	42
V Infinity And Hohmann Transfers			
V Infinity, V Hyperbola, V Escape, V Circular			
Parts Of A Hyperbola	V Infinity And Hohmann Transfers	4	45
Mu (µ)	V Infinity, V Hyperbola, V Escape, V Circular	4	46
Oberth benefit			
Farquhar route, EML2 51 Rocket equation 52 Rocket equation, delta V and mass fraction 53 Propellent depots can bust up the exponent in the rocket equation 54 Dynamic pressure and max Q 55 Gravity loss during ascent, Thrust to Weight ratio (T/W) 56 Thrust vs exhaust velocity 57 What's a millinewton? What's acceleration? 58 The need for a better alpha 59 The ion tortoise vs the chemical hare 60 Sun's gravity well and atomic rockets 61 Potential propellent sources 62 Cartoon delta V map 63 Websites and books of interest 64	Mu (μ)	4	48
Rocket equation			
Propellent depots can bust up the exponent in the rocket equation	Farquhar route, EML2		51
Propellent depots can bust up the exponent in the rocket equation	Rocket equation	!	52
Propellent depots can bust up the exponent in the rocket equation	Rocket equation, delta V and mass fraction	!	53
Thrust vs exhaust velocity	Propellent depots can bust up the exponent in the rocket equation		54
Thrust vs exhaust velocity	Dynamic pressure and max Q	!	55
Thrust vs exhaust velocity	Gravity loss during ascent, Thrust to Weight ratio (T/W)	!	56
The need for a better alpha	Thrust vs exhaust velocity	!	57
The need for a better alpha	What's a millinewton? What's acceleration?	!	58
The ion tortoise vs the chemical hare 60 Sun's gravity well and atomic rockets 61 Potential propellent sources 62 Cartoon delta V map 63 Websites and books of interest 64	The need for a better alpha	!	59
Sun's gravity well and atomic rockets			
Potential propellent sources			
Cartoon delta V map63 Websites and books of interest64			
Websites and books of interest64	Cartoon delta V map		63
	Websites and books of interest		64

Evenly spaced parallel lines measure distance from a line.

Evenly spaced concentric circles measure distance from a point.

For each point on a parabola,
Distance to Focus Point = Distance to Directrix Line.
Eccentricity = 1.

For each point on this ellipse,
Distance to Focus Point = 1/2 Distance to Directrix Line.
Eccentricity = 1/2.

For each point on this hyperbola,
Distance to Focus Point = Twice Distance to Directrix Line.

Eccentricity = 2.

Conic sections come from cutting a cone with a plane. The circle, ellipse, parabola and hyperbola are all conic sections.

Conic Section means Cut Cone.

A flashlight beam is a cone and the floor is a plane that cuts it. The circle, ellipse, parabola, and hyperbola are all conic sections.

With a hyperbola the floor cuts both halves of the light cone. There are two lines the hyperbola gets closer and closer to but never touches. These are the hyperbola's asymptotes.

For each point on this ellipse, Distance to Focus 1 + Distance to Focus 2 = 8.

For each point on this hyperbola, Distance to Focus 1 - Distance to Focus 2 = 4.

Tack two ends of a string to a sheet of drawing board. Keeping the string taut, move the pencil. The path will be an ellipse with a tack at each focus. Planets, asteroids and comets move about our sun on ellipse shaped orbits.

The sun lies at one focus of the ellipse. This is **Kepler's First Law**.

The point closest to the sun is called the **perihelion**, the farthest point is the **aphelion**.

The average distance from earth's center to the sun's center is called an astronomical unit, or A.U. for short. Mercury's average distance from the sun is .39 A.U., Venus .72 A.U. and Mars average distance is 1.52 A.U.

A Hohmann orbit from earth to Mars is tangent to (just touches) the Earth orbit and Mars orbit. The Hohmann perihelion is at 1 A.U., the aphelion is at 1.52 A.U.

The earth moves around the sun at 30 kilometers/sec. Mars moves around the sun at 24 kilometers a second.

At perihelion the space ship is moving 3 kilometers/second faster than earth. At Aphelion, the spaceship is moving 2.5 kilometers/second slower than Mars.

The semi major axis of an ellipse is often denoted with the letter **a**. The semi minor axis is usually called **b**. An ellipses' eccentricity is often labeled **e**.

In all of these ellipses a = 1. That is the semi major axis is one unit long.

The circle is a special ellipse of eccentricity zero.

As eccentricity gets closer to one, the foci move from the center to the edge.

A line segment could be regarded as an ellipse of eccentricity 1.

Over 2 weeks this orbit sweeps a wedge. Some wedges are short & fat, others tall & skinny.

But they all have the same area.

An orbiting body sweeps equal areas in equal times.

The two rectangles and parallelogram pictured above all have the same area.

As an object gets closer to the sun it goes faster and the velocity vector gets bigger. The Radius Vector and velocity vector make two sides of parallelogram. The area of the parallelogram stays the same. At perihelion and aphelion the parallelogram is a rectangle.

Chopping into finer wedges it becomes obvious $| \mathbf{r} \times \mathbf{v} |$ is twice the area of a wedge swept out over a given time. Summing all the wedges we can see specific angular momentum is twice (area of the ellipse)/(orbital period).

Squares and Square Roots

This may not seem related to conic sections and orbital mechanics. But we will use these concepts in Kepler's Third Law.

2 to the third power is 8. or: 2 cubed is 8.

$$8^{1/3} = 2$$

8 to the one third power is 2. Or: The cube root of 8 is 2.

3 to the third power is 27. or: 3 cubed is is 27.

$$27^{1/3} = 3$$

27 to the one third power is 3. The cube root of 27 is 3.

Cubes and Cube Roots

These are also concepts used in Kepler's Third Law.

Given a right triangle with legs a and b, and hypotenuse c,

$$a^2 + b^2 = c^2$$

Calling the period of a circular orbit T, $(2\pi \text{ radians /T})$ is ω , the angular velocity. Circle radius = r.

Centrifugal acceleration is $\omega^2 r$.

So centrifugal acceleration is w^2r .

The so-called centrifugal force isn't really a force but inertia in a rotating frame.

Gravity falls off with inverse square of distance. Gravity acceleration = GM / r^2 .

G is the universal gravitational constant M is the mass of the gravitating body and r is the distance of the body.

In a circular orbit the orbiting body stays the same distance from the central gravitating body. Force of gravity cancels centrifugal force

So we can say $GM / r^2 = \omega^2 r$ $GM = \omega^2 r^3$

 $GM = \omega^2 r^3$ In the case of earth's orbit about the sun, we see $GM = (2\pi / \text{Year})^2 * A.U.^3$.

Kepler's Third Law

Orbital Period T is given by

 $T = 2\pi (a^3 / GM)^{1/2}$

Where a = k A.U..

Substitute $(2\pi / \text{Year})^2 * A.U.^3$ for GM and k A.U. for a,

 $T = 2\pi ((k A.U.)^3 / ((2\pi / Year)^2 * A.U.^3)^{1/2}$

 $T = 2\pi (k^3 * (Year / 2\pi)^2)^{1/2}$

 $T = k^{3/2}$ Years

$T = k^{3/2}$ Years

Kepler's Third Law:

Orbital period is proportional to length of semi major axis raised to 3/2 power.

The number of astronomical units of the semi-major axis raised to the 3/2 power gives the number of years a body takes to orbit the sun. This comes from **Kepler's Third Law**.

 π is a number a little more than 3, about 3.14. It's spelled "pi" and pronounced "pie", like delicious apple pie.

The area of a circle is $\pi r \times r$ which is πr^2 .

A circle of radius 10 units has area of about 3.14×10^2 square units, which is 314 units².

Snip off the shorter string segment and put it on the other side and you'll see the string length is 2a, the length of the ellipse's major axis.

b and ea are legs of a right triangle with hypotenuse a.

From the Pythagorean Theorem, page 21:

$$(ea)^2 + b^2 = a^2$$

 $b^2 = a^2 - (ea)^2$
 $b^2 = (1 - e^2)a^2$
 $b = (1 - e^2)^{1/2}a$

$$b = (1 - e^2)^{1/2}a$$

An ellipse can be thought of as a circle shrunk along one of it's diameters. Thus the area of the ellipse is the area of the circle shrunk by the same factor. Specific angular momentum $|\mathbf{r} \times \mathbf{v}|$ is twice area ellipse over orbital period.

w is the Greek lower case letter omega.

The symbol w is often used to denote **angular velocity** in radians covered over a period of time.

A full circuit is 2 π radians

Examples:

The second hand on a clock has $w = 2 \pi$ radians / minute

The minute hand on a clock has $w = 2 \pi$ radians / hour

The hour hand on a clock has $w = 2 \pi$ radians / 12 hours

Speed is angular velocity in radians times r where r is distance from center of rotation.

v = wr

All portions of a second hand are moving the same angular velocity, 2π radians per minute. But the outer parts of the second hand are moving faster than the parts closer to the center of rotation.

 $y = wr = (2 \pi * 2 cm) / minute$

 $v = \omega r = (2 \pi * 4 cm) / minute$

We've been using canonical units based on earth's orbit around the sun.

But we can also choose canonical units based on any circular orbit around any body.

Kepler's Third Law still applies.

We set our unit of length, $R_{\rm g}$, to the radius of geosynchronous orbit.

 $R_q = 42,300$ kilometers.

Orbital period T is one sidereal day,
T = 23 hours 56 minutes.
For this discussion
we'll just call that a day.

$$T = 1 day$$

Moon's orbital radius is 384,400 km. 384,400/42,300 = ~9.08

A lunar distance is about 9 R_a.

80

Moon

$$9^{3/2} = (9^{1/2})^3 = 3^3 = 27$$

And, indeed, the moon's orbital period is close to 27 days.

Take a point on the beanstalk. Call the distance from this point to earth's center $r R_g$.

Note we're using R_g as our unit of length.

Release a payload from this point and it will fall into an elliptical orbit with earth's center at a focus and r is the apogee of this ellipse.

$$rR_g = (1+e)a$$

 $|r \times v| = rR_g * v = rR_g * wrR_g = w(rR_g)^2$

Every point on the elevator is moving at the same angular velocity, 2π radians/day.

An alert reader might say "Hey! That rectangle's area is a lot more than twice the are of the ellipse!"

That's because we are using a day as our time unit. wr would be shorter if we used T, the orbital period of this ellipse, as our time unit,.

|r X v| = twice ellipse area/ellipse's orbital period
$$w(rR_g)^2 = (1-e^2)^{1/2} * 2 \pi a^2 / T$$

Recall $a = k R_g$.

 $w(rR_g)^2 = (1-e^2)^{1/2} * 2 \pi (kR_g)^2 / (k^{3/2} \text{ days})$
 $2 \pi/\text{day} * (rR_g)^2 = (1-e^2)^{1/2} * 2 \pi k^{1/2} * R_g^2 / \text{day}$
 $(rR_g)^2 = (1-e^2)^{1/2} * k^{1/2} * R_g^2$
 $r^2 = (k(1-e^2))^{1/2}$

Now $rR_g = (1+e)a$ which = $(1+e)kR_g$ so $k = r/(1+e)$
 $r^2 = (r(1-e^2)/(1+e))^{1/2}$
 $r^4 = r(1-e^2)/(1+e)$
 $r^3 = 1-e$

 $e = 1 - r^3$

If r > 1, payload is released at perigee and we can use similar methods to find $e = r^3-1$. In general

$$e = |r^3 - 1|$$

So we know the eccentricity of the conic payload follows when released from the elevator. This plus the fact that release point is at either periapsis or apoapsis of the orbit allows us to draw a family of conics associated with the elevator

Zero Relative Velocity Transfer Orbit

Anchor a vertical elevator on the Martian moon Deimos.

Between Deimos circular orbit and Mars' center there are ellipses of every eccentricty between 0 and 1.

Anchor an elevator at the Martian moon Phobos.

Between Phobos circular orbit and the parabola there are also ellipses of every eccentricity between 0 and 1.

Do the Phobos and Deimos elevators share an ellipse?

Overlapping the two families of conics, the moiré pattern seems to indicate a shared ellipse.

At periapsis a payload traveling along this elliptical orbit would have the same relative velocity as the rendezvous point on a Phobos elevator. At apoapsis the payload would have the same relative velocity as the rendezvous point on a Deimos tether.

Using this Zero Relative Velocity Transfer Orbit the two moons could exchange payloads using virtually zero reaction mass.

Paul Penzo, a JPL engineer, talked about this possible path between Deimos and Phobos elevators back in 1984. Above is Penzo's illustration from that paper.

I believe ZRVTO is a term coined by Marshall Eubanks who is also an advocate of PAMSE -- Phobos Anchored Mars Space Elevator.

The top of the Phobos tether is moving the same angular velocity as Phobos, ω_{phobos} .

The bottom of the Deimos tether is moving the same angular velocity as Deimos, $\boldsymbol{\omega}_{\text{Deimos}}$.

$$\begin{array}{l} \text{Specific angmom = } v_{\text{periaerion}} X \ r_{\text{periaerion}} \\ \text{Specific angmom = } v_{\text{apoiaerion}} X \ r_{\text{apoiaerion}} \\ v_{\text{periaerion}} X \ r_{\text{periaerion}} = v_{\text{apoiaerion}} X \ r_{\text{apoiaerion}} \\ w_{\text{Phobos}} X \ ((1-e)a)^2 = w_{\text{Deimos}} X \ ((1+e)a)^2 \end{array}$$

$$e = (1 - (\omega_{Deimos}/\omega_{Phobos})^{1/2})/(1 + (\omega_{Deimos}/\omega_{Phobos})^{1/2})$$

Specific angmom =
$$\omega_{Phobos} X r^2 = (a(1-e^2)\mu)^{1/2}$$

At periapsis r is (1-e)a. So a = r/(1-e). Substituting: $w_{Phobos} X r^2 = (r(1+e)\mu)^{1/2}$ $r^4 = r(1+e)\mu/w_{Phobos}^2$ $r = ((1+e)\mu/w_{Phobos}^2)^{1/3}$

$$r_{\text{periaerion}} = (1 + e)^{1/3} r_{\text{Phobos}}$$

Similarly:

$$r_{\text{apoaerion}} = (1 - e)^{1/3} r_{\text{Deimos}}$$

Angular velocities as well as orbital radii of Phobos and Deimos are easily found on Wikipedia.

Plugging these into the above equations we find an ~1000 km tether ascending from Phobos and a ~3000 km tether descending from Deimos is sufficient for a ZRVTO route between the two moons.

Not just Phobos & Deimos

This technique can be used for any pair of tide-locked moons in nearly circular, coplanar orbits.

Anchor moons could be man made.
A series of orbital tethers would be shorter and endure less stress than a full blown space elevator to a planet's surface.

A floating ball head is wearing a dunce cap/mosquito net. Where the ocean meets the mosquito net is an ellipse. Where the ball head touches the water is a focus. Where the fish kisses the air is a focus. The ball head's hat brim is a directrix plane as is the fish's belt plane. Where the directrix planes meet the ocean surface are two lines called directrix lines.

Each radius of a circle has length r.

A line tangent to the circle is at right

angles to the radius it touches.

by the Pythagorean theorem:

$$e^{2} + r^{2} = f^{2}$$
 $e^{2} = f^{2} - r^{2}$

$$e^{2} = f^{2} - r^{2}$$

$$a^2 + r^2 = f^2$$

$$g^2 + r^2 = f^2$$
 $g^2 = f^2 - r^2$

$$e = g$$

Two such line segments on tangent lines whose end points meet are equal.

The equality of line segments whose ends meet, that lie on lines tangent to the sphere and having an end lieing on the sphere, is a tool in use of Dandelin Spheres.

If a = b and c = d, then a - c = b - d. Each rib of the above lamp shade ia a line segment equal to each other rib.

Dandelin spheres show that two descriptions of the ellipse do indeed describe the same thing.

Drop a line segment straight down from the directrix plane to a point on the ellipse. The cone element line segment to the point is the same length as the point's distance to focus. All cone elements meet the directrix plane at angle α . The cutting plane meets the directrix plane at angle β . The line straight down from the directrix is a fold in a triangle having angles α and β . All these triangles are similar, having the same proportions. Since distance to focus and distance to focus are always sides of similar triangles, the ratio of these two lengths remain constant.

Pages 3, 4 & 5 we looked at conics in terms of distance from a point and a line.

Pages 10 and 11 we looked at conics in terms of distance from two points.

Now we will look at conics in terms of distance from two lines.

The vertical line we call the y axis, the horizontal line we call the x axis.

Above is a picture of a parabola. Can you see a pattern?

Above is the more usual way of showing a parabola on a Cartesian grid.

When (x, y) coordinates are given, the first gives horizontal distance from the y axis, the second coordinate gives vertical distance from the x axis.

Going to the left or going down is given a minus sign.

The vertical and horizontal distance can be seen as legs of a right triangle. Distance from the origin (0, 0) to a point is the hypotenuse of this right triangle.

All these points are 5 units away from the origin. $x^2 + y^2 = 5^2$ describes a circle with radius 5.

Remember on page 9 how a hyperbola gets closer and closer to the asymptotes?

As an object falls towards Earth, it moves faster and faster. At the closest point to the Earth, the perigee, it's moving at top speed. As it moves away, Earth's gravity pulls it, slowing it down. As the hyperbola gets closer to the asymptote, the speed gets closer and closer to V infinity, the speed the object would have at an infinite distance

from Farth.

After a few million kilometers from the Earth, it is moving so close to V infinity, the difference is negligible.

V infinity is also called the hyperbolic excess speed.

We zoom out some more.

What is this? The so called "straight lines" are starting to gently curve.

What's going on here?

We're entering a scale where the tiny Earth's influence is barely visible, but we can start to see the effects of the much larger sun.

The semi major axis of a hyperbola is often denoted with the letter a. This is a negative number. A hyperbola's eccentricity is often labeled e.

Objects closer to the gravitating body move faster while objects farther away move slower.

The coin funnels you sometimes see at shopping malls can give a feel for orbits. The coin rolls slowly as it starts its path at the edge and coins closer to the center move fast.

Orbiting objects closer don't spiral in, though.
Unless it's close enough to earth to feel drag
from the earth's atmosphere.

Kinetic energy = $\frac{1}{2}$ mv²

Kinetic energy goes with the square of velocity.

Double your speed and you'll quadruple your kinetic energy.

KE also goes with mass. m = mass of the moving object.

V_b=velocity added by a rocket burn.

If you make a burn to accelerate a rocket while going fast, you get more kinetic energy.

This is known as the

Oberth benefit.

Thus you get more bang for your buck doing a burn when you're closer to a planet and moving faster.

High earth orbits are relatively slow and low earth orbits move faster.

So a fellow who calls himself Rune was telling me it's better to depart from LEO (Low Earth Orbit) when heading for Mars.

"What about Mr. Oberth?" Rune asked me.

I'm going so slow that a small tap of my brakes kills most my speed and I start falling towards earth.

I pick up speed as
I fall towards
perigee (the
closest point to
earth in my
new orbit).

I catch up to Rune at just a hair under escape velocity - 10.9 km/s. Rune is moving 7.7 km/s. A perigee burn would get me nearly twice the Oberth benefit Rune's LEO burn would give.

The Rocket Equation:

Mass fraction propellent = 1-e-delta V/exhaust velocity.

Here the letter e doesn't refer to eccentricity but rather Euler's number, a number discovered by Leonhard Euler. The number e is about 2.72

Let's say our

delta V budget is 3 km/s

and we're using oxygen/hydrogen bipropellent with an

exhaust velocity of 4.4 km/s. $e^{-(3 \text{ km/s})/(4.4 \text{ km/s})} = e^{-3/4.4}$

= .5057 (about 1/2)

A 3 km/s rocket is about 1/2 propellent by mass.

So if we want a 6 km/s delta V budget, we need to accelerate 3 km/s more.

We need

20 tonnes propellent

to accelerate our 10 tonnes of dry mass plus 10 tonnes of propellent.

Each 3 km/s added to the delta V budget doubles total mass

3 km/s Dry Mass 50%

One half of this egg's volume is shell.

6 km/s Dry Mass 25%

One fourth of this egg's volume is shell.

9 km/s

Dry Mass 12.5%

One eighth of this egg's volume is shell.

As the delta V budget goes up, the structure of the ship must become thinner and more delicate. It takes between 9 and 10 km/s to get to orbit and between 12 and 13 km/s to earth escape. So the upper stages must have walls and structure egg shell thin.

And spacecraft must endure extreme conditions.

Max Q for ascent through earth's atmosphere is often around 35 kilopascals.

For re-entry Max Q can reach 90 kilopascals.

A severe hurricane is about 3 kilopascals.

To meet mass fraction constraints, aerospace engineers have designed staged rockets.

Dry mass is thrown away enroute.

Could you imagine how much a transcontinental flight would cost if we threw away a 747 each trip?

The cartoon to the right is somewhat dated.
As of this writing (2019)
Jeff Bezos' Blue Origin and Elon Musk's SpaceX seem well on their way to making economical, reusable boosters.

But upper stages remain expendable (in other words, disposable).

In a world with no gas stations...

After the pickup does it's part, it's tossed.

The VW bug meets the same fate...

And the motorcycle gets flushed. For decades this has been the way to reach destinations.

A severe hurricane is about 3 kilo pascals. Typical Max Q for a rocket's ascent is about 35 kilo pascals. Moving orbital velocity at sea level inflicts about 35,000 kilopascals.

At 100 km altitude the air's so thin the ship suffers little dynamic pressure. Ships usually attain this altitude before doing the major burn to achieve orbital velocity.

GRAVITY LOSS

Gravity cancels out some of a rocket's upward acceleration.

Earth surface gravity: 9.8 m/sec².

102 seconds vertical ascent means 1 km/s gravity loss. To minimize gravity loss, ascent needs to be as fast as possible.

For ascent we want to maximize thrust & acceleration.

A booster stage will typically have more rocket engines than an upper stage.

THRUST/WEIGHT RATIO (T/W)

THE MYTH OF 30X — The Tier One Project won the \$10 million Ansari X-Prize in 2004 when they made two suborbital trips within 5 days with a reusable manned rocket. Some said "Big deal. Potential energy at the Karman line is only 1/30 of the kinetic energy of

a 7.7 km/s orbit. Getting altitude isn't the problem -It's going sideways fast." This argument ignores
gravity loss and a booster's need for extra thrust.
A booster stage to get above the Karman line
can easily be 2/3 of a rocket's cost.

Thrust vs Exhaust Velocity

A rocket with higher exhaust velocity can achieve more delta V with a lower propellent mass fraction. High ISP propellent is desirable.

However high **thrust** is also desirable. We need a high trust to weight ratio to climb above earth's atmosphere without exorbitant gravity loss.

Sadly thrust goes down when exhaust velocity goes up. To the right is a graph showing an ideal ion engine's thrust to power for different exhaust velocities.

Ion engines can have a much higher exhaust velocity but with the lower acceleration it takes much longer to achieve a change in

velocity. Since much of the acceleration is done higher on the slopes of a planetary gravity well, there is less Oberth benefit.

What's a milliNewton?

A newton is a unit of force. And force is mass times acceleration.

1 newton = 1 kilogram * 1 meter/second².

A millinewton is 1/1000 of a newton.

1 millinewton = 1 gram * 1 meter/second².

A dollar bill has a mass of one gram.

Besides weight, newtons and millinewtons also measure a rocket's thrust.

What's acceleration?

Acceleration is change in velocity over time.

Units can be (meters/second)/second. Which is meters/second², or m/s² for short. A 2019 Corvette ZR1 goes from zero to sixty miles per hour in 2.85 seconds (60 miles/hour) / 2.85 seconds = (60 * 1609 meters / 3600 seconds) / 2.85 seconds = $9.4 \text{ meters} / \text{second}^2$. 1 earth gravity is 9.8 m/s^2 so passengers feel just short of 1 g acceleration when the driver puts the pedal to the metal.

0 to 60 mph in 2.85 seconds

The plume of ionized xenon coming from an XR-100 Hall Thruster is a beautiful thing. The ionized xenon atoms go in different directions at different speeds but the effective exhaust velocity ranges from 16 to 32 km/s.

The XR-100 gives up to 5 newtons of thrust and masses 230 kg. 5 newtons/230 kg is about 21 mm/s² acceleration.

That seems decent.

But we also need a 100 kilowatt power source.

That can be another 1,400 kg. Add to that structure and avionics, power processing unit and payload and dry mass can total 4000 kg. Let's say you want an 11 km/s delta V budget. At maximum thrust and 16 km/s exhaust velocity, that's another 4000 kg of xenon.

That's around .6 mm/s² for a craft full of xenon and around 1.2 mm/s² when xenon's nearly depleted.

A lower mass power source is desirable.

The Need for a Better Alpha

Alpha is a measure of how much mass it takes to generate power.

In 2011 Franklin Chang Diaz caused quite a stir when he claimed his VASIMR ion engine could get men to Mars in 39 days. A typical Hohmann trip to Mars is around 8.5 months.

However Diaz' claims relied on an alpha of .5 kilograms per kilowatt electricity. Kirk Sorensen, Robert Zubrin and others have said such a high power, low mass power source isn't doable.

What is a .5 kg/kWe alpha?.

I try to portray it to the right.

A Ford Focus is 160 horsepower which is 120 kilowatts.

Dominique is 60 kilograms.

That's .5 kg/kW.

Dominique must also do the work of the gasoline and oxygen the engine burns.

There are no gas stations or charging stations on the way to Mars. Nor is there an oxygen atmosphere.

Is such a power source impossible?
I hope not. It's certainly something to strive for.

POTENTIAL PROPELLENT SOURCES

Water (H₂0) can be cracked into hydrogen & oxygen, one of the best bipropellants. Carbon dioxide (CO₂) can be cracked into carbon and oxygen. Carbon and hydrogen can make methane (CH₄), one of the more storable rocket fuels. These can be found in various places.

Our Moon's poles have crater floors that never feel sunlight. These can be as cold as 30° Kelvin, cold enough to freeze and trap volatile gases. Probes have detected water and other volatile ices in the cold traps.

Near the cold traps are plateaus that enjoy almost constant sunlight.

A LEO to Moon Hohmann trip is about 5 days. Launch windows to the moon are always open.

Some Near Earth Asteroids (NEAs) are thought to be 40% water by mass in the form of hydrated clays.

NEAs in heliocentric orbits have rare launch windows and long trip times.

However they can be nudged into loose lunar capture orbits where they would enjoy short trip times and frequent launch windows, just like the moon.

5.7

There are NEAs within .2 km/s of EML2.

Mars has a thin CO2 (carbon dioxide) atmosphere, underground H₂O and sheets of H₂O & CO₂ ice at the poles. Mars is about 1 km/s from EML2 (using aerocapture).

Martian moons Phobos & Deimos may also Have propellent. Whether they have water is still unknown.

Hohmann trip time is about 8.5 months and Hohmann launch windows open about every 2.14 years.

LEO

Most of these delta Vs are figured using two equations:

The Vis-Viva equation: $V^2 = GM$ (2/r - 1/a) and Velocity of Hyperbolic Orbit: $V_{hyp}^2 = V_{esc}^2 + V_{inf}^2$.

The 3.5 km/s number from EML2 to LEO assumes the Farguhar Route (page 51).

The 1.6 km/s from EML2 to Mars Capture assumes using the Farquhar Route (page 51) and then doing the Trans Mars Injection (TMI) burn at LEO when the ship is moving 11 km/s.

The 1.2 km/s number from EML2 to Venus capture also assumes the Farquhar Route and enjoying a healthy Oberth benefit (pages 49 & 50) for the near Earth burn when the ship's moving 11 km/s.

Ascending from Venus' surface through the thick atmosphere would take lots of delta V, hence the 20 km/s from Venus surface to Landis Land. Landis Land is my term for a potentially habitable layer of Venus' atmosphere where pressure and temperature is human friendly. Balloon cities filled with nitrogen and oxygen would be buoyant in Venus' mostly carbon dioxide atmosphere.

The numbers mostly assume Hohmann transfers with impulsive chemical burns. I also assumed circular, coplanar orbits which simplifies calculations but lessens accuracy. The numbers are ball park estimates.

Helpful Websites and Books

Orbital Mechanics: http://www.braeunig.us/space/orbmech.htm Nice orbital mechanics resource

Encyclopedia Astronautica: http://astronautix.com
Detailed descriptions of various rocket engines including thrust & exhaust velocity, history, more.

Astrogator's Guild: https://see.com/astrogatorsguild/ Professional astrogators Mike and John talk about space exploration

Atomic Rockets: http://www.projectrho.com/public_html/rocket/ Great resource for space enthusiasts and writers of hard science fiction.

Blog on science fiction and space exploration: http://toughsf.blogspot.com Matter Beam explores various hard science fiction ideas

> Blog on space exploration: https://selenianboondocks.com Jonathan Goff's blog on possible space technologies

http://spaceflighthistory.blogspot.com Space historian David F. Portree's informative blog

Sarmount's Opening the High Frontier: http://www.high-frontier.org/author/eaglesarmont/ Sarmount suggested vertical skyhooks in the 1990's.

Moonwards, advocates of lunar settlement: https://www.moonwards.com Kim Holder and friends explore possible benefits lunar development could offer

https://newpapyrusmagazine.blogspot.com Marcel Williams' thoughts on space exploration and lunar development

A forum on space exploration: https://forum.nasaspaceflight.com News and discussion of space exploration

A forum on space exploration: https://www.reddit.com/r/space/ News and discussion of space exploration

Fragomatik's beautiful Youtube channel on plausible hard science fiction scenarios: https://www.youtube.com/channel/UCOLioOoKOmtWiIlosl_YB1Q

Space Stack Exchange: https://space.stackexchange.com Questions and answers on space exploration

Orbiter: http://orbit.medphys.ucl.ac.uk

A space flight simulator

Kerbal Space Program: https://www.kerbalspaceprogram.com
A game that teaches orbital mechanics

Scott Manley's YouTube Channel: https://www.youtube.com/user/szyzyg/featured Kerbal Space Program tutorials and more

> Fundamentals of Astrodynamics by Bate, Mueller and White An inexpensive textbook on orbital mechanics

Nick Stevens space graphics: https://nick-stevens.com/the-artist/professional-work/ Some great illustrations and videos of possible spaceships.

> The Worlds of David Darling: http://www.daviddarling.info Lots of info on music, history, science and math

> > Mining The Sky by John S. Lewis Possible resources from the asteroids

Rain of Iron and Ice by John S. Lewis
The possibility of destruction from asteroid impacts