Notes from the artist

I'm hoping this book will expose younger students to concepts they normally wouldn't see until higher grades. And that it will give advanced students some new views of concepts they're already familiar with.
Thank you to Steven Pietrobon for his many helpful comments. Also to Isaac Kuo for his suggestion. They've helped me make this a better book. Any mistakes in this book are my own.
Hollister (Hop) David
Table of Contents
Two kinds of rulers
. 2 \& 3

Cut Cones Parabola, Circle, Ellipse, Hyperbola... 7
Cone of light: circle, ellipse, parabola... 8
Cone of light: hyperbola.. 9

Kepler's 1st Law .. 12
Astronomical Units, Hohmann transfer orbit... 13
Parts of an ellipse: a, b, \& ea... 14
Eccentricity ellipse.. 15
Kepler's 2nd Law.. 16
Specific angular momentum, cross product of position and velocity vectors................... 17
Kepler's 2nd Law \& Specific Angular Momentum .. 18
To the second Power -- Squaring.. 19
To the third Power -- Cubing .. 20
Ptyhagorean Theorem.. 21
Centrifugal acceleration.. 22
Gravity and Kepler's Third Law ... 23
Orbital periods in years in terms of distance from sun .. 24
Area of a circle ... 25
Ellipse's a, ea \& b as legs and hypotenuse of right triangle .. 26
Area ellipse... 27
Radians... 28
Velocity circular motion is ω * radius... 29
Earth centered canonical units... 30

Payload paths when released from different points of a vertical tower32, 33
Zero Relative Velocity Transfer Orbits (ZRVTOs)...34, 35
Dandelin Spheres .. 36
Dandelin spheres ellipse from cut cones in terms of distance from foci............37, 38, 39
Dandelin spheres ellipse from cut cones in terms of distance from foci \& directrix...... 40
Parabola in terms of distance from an x and y axis, cartesian coordinates 41, 42
Circle in cartesian coordinates.. 43
V Infinity .. 44
V Infinity And Hohmann Transfers ... 45
V Infinity, V Hyperbola, V Escape, V Circular ... 46
Parts Of A Hyperbola.. 47
$\operatorname{Mu}(\mu)$.. 48
Oberth benefit...49, 50
Farquhar route, EML2 .. 51

Rocket equation, delta V and mass fraction... 53
Propellent depots can bust up the exponent in the rocket equation 54
Dynamic pressure and max Q ... 55
Gravity loss during ascent, Thrust to Weight ratio (T/W) ... 56
Thrust vs exhaust velocity ... 57
What's a millinewton? What's acceleration? .. 58

The ion tortoise vs the chemical hare... 60
Sun's gravity well and atomic rockets... 61
Potential propellent sources... 62
Cartoon delta V map.. 63
Websites and books of interest .. 64
Any corrections, suggestions or comments, please contact me at hopd@cunews.info

Evenly spaced concentric circles measure distance from a point.

For each point on a parabola, Distance to Focus Point = Distance to Directrix Line. Eccentricity $=1$.

For each point on this ellipse,
Distance to Focus Point = 1/2 Distance to Directrix Line.
Eccentricity $=1 / 2$.

For each point on this hyperbola, Distance to Focus Point = Twice Distance to Directrix Line. Eccentricity $=2$.

Conic sections come from cutting a cone with a plane. The circle, ellipse, parabola and hyperbola are all conic sections.

Conic Section means Cut Cone.

A flashlight beam is a cone and the floor is a plane that cuts it.
The circle, ellipse, parabola, and hyperbola are all conic sections.

With a hyperbola the floor cuts both halves of the light cone. There are two lines the hyperbola gets closer and closer to but never touches. These are the hyperbola's asymptotes.

For each point on this ellipse,
Distance to Focus $1+$ Distance to Focus $2=8$.

For each point on this hyperbola, Distance to Focus 1 - Distance to Focus $2=4$.

Tack two ends of a string to a sheet of drawing board.
Keeping the string taut, move the pencil. The path will be an ellipse with a tack at each focus.
Planets, asteroids and comets move about our sun on ellipse shaped orbits.
The sun lies at one focus of the ellipse. This is Kepler's First Law.
The point closest to the sun is called the perihelion, the farthest point is the aphelion.

A Hohmann orbit from earth to Mars is tangent to (just touches) the Earth orbit and Mars orbit. The Hohmann perihelion is at 1 A.U., the aphelion is at 1.52 A.U.

The earth moves around the sun at 30 kilometers $/ \mathrm{sec}$.
Mars moves around the sun at 24 kilometers a second.
At perihelion the space ship is moving 3 kilometers/second faster than earth. At Aphelion, the spaceship is moving 2.5 kilometers/second slower than Mars.

Parts of an Ellipse $a=$ semi major axis
 $b=$ semi minor axis

e = eccentricity
(in the above ellipse $e=.5$ or one half.)

ea $=$ distance from ellipse center to focus

The semi major axis of an ellipse is often denoted with the letter a. The semi minor axis is usually called b. An ellipses' eccentricity is often labeled e.

In all of these ellipses $a=1$. That is the semi major axis is one unit long. The circle is a special ellipse of eccentricity zero.
As eccentricity gets closer to one, the foci move from the center to the edge.
A line segment could be regarded as an ellipse of eccentricity 1.

Aphelion

Over 2 weeks this orbit sweeps a wedge. Some wedges are short \& fat, others tall \& skinny.
But they all have the same area.
An orbiting body sweeps equal areas in equal times.

Velocity Vector Perihelion

Aphelion
Radius Vector X Velocity Vector
$=$
Specific Angular Momentum
When dealing with vectors an X denotes cross product.
Magnitude of a cross product can be thought of as area of the parallegram.
The two rectangles and parallelogram pictured above all have the same area.
As an object gets closer to the sun it goes faster and the velocity vector gets bigger. The
Radius Vector and velocity vector make two sides of parallelogram. The area of the parallelogram stays the same. At perihelion and aphelion the parallelogram is a rectangle.

Kepler's 2nd Law:
Radius vector sweeps out

> Cross product of position and velocity vectors is twice the area the vector sweeps out in a given time.

Chopping into finer wedges it becomes obvious $|\mathbf{r} \times \mathbf{v}|$ is twice the area of a wedge swept out over a given time. Summing all the wedges we can see specific angular momentum is twice (area of the ellipse)/(orbital period).

$$
2^{2}=2 \times 2=4
$$

2 squared is 2 times 2 which is 4 .
Another way to read it:
2 to the second power equals 2 times 2 which equals 4. Can you see why 2 to the second power is also called 2 squared?

$$
4^{1 / 2}=2
$$

4 to the half power is 2 . Or: The square root of 4 is 2 .

$$
3^{2}=3 \times 3=9
$$

3 squared is 3 times 3 which is 9 . Another way to read it:
3 to the second power equals 3 times 3 which equals 9.

$$
9^{1 / 2}=3
$$

9 to the half power 3. Or: The square root of 9 is 3 .

$$
4^{2}=4 \times 4=16
$$

4 squared is 4 times 4 which is 16 .

$$
16^{1 / 2}=4
$$

16 to the half power is 4 . Or:
The square root of 16 is 4 .

Squares and Square Roots

This may not seem related to conic sections and orbital mechanics. But we will use these concepts in Kepler's Third Law.

$$
\begin{gathered}
2^{3}= \\
2 \times 2 \times 2= \\
2 \times 4= \\
8
\end{gathered}
$$

2 to the third power is 8 . 2 cubed is 8 .

$$
8^{1 / 3}=2
$$

8 to the one third power is 2 . Or: The cube root of 8 is 2 .

$$
\begin{gathered}
3^{3}= \\
3 \times 3 \times 3= \\
3 \times 9= \\
27 \\
3 \text { to the third power is } 27 . \\
3 \text { cubed is is } 27 .
\end{gathered}
$$

$$
27^{1 / 3}=3
$$

27 to the one third power is 3. The cube root of 27 is 3 .

Cubes and Cube Roots
These are also concepts used in Kepler's Third Law.

Given a right triangle with legs a and b, and hypotenuse c,

$$
a^{2}+b^{2}=c^{2}
$$

Earth is moving about 2π A.U./year. The velocity vector changes direction during the circuit around the sun.

To get change of velocity from one month to the next, place the foot of one vector on the foot of another. The vector from one tip to the other is the change.

Between these two vectors there are many intermediate vectors.
 Over a year's time the velocity vector traces a circle of circumference 2π * v $2 \pi /$ year * 2π A.U. / year $=2 \pi^{2} /$ year 2 *. U.

$$
=\omega^{2} r
$$

Centrifugal
Acceleration $=\omega^{2} r$
Christiaan Huygens
showed this in 1859

Calling the period of a circular orbit $T,(2 \pi$ radians $/ T)$ is ω, the angular velocity. Circle radius $=r$.

Centrifugal acceleration is $\omega^{2} r$.

So centrifugal acceleration is $\omega^{2} r$.
The so-called centrifugal force isn't really a force but inertia in a rotating frame.

Double the distance \& gravity spreads over 4 times the area
3^{2} inverse square of distance.
Gravity acceleration $=G M / r^{2}$.
G is the universal gravitational constant M is the mass of the gravitating body and r is the distance of the body. In a circular orbit the orbiting body stays the same distance from the central
gravitating body. Force of gravity cancels stays the same distance from the central
gravitating body. Force of gravity cancels centrifugal force
So we can say
$G M / r^{2}=\omega^{2} r$
$G M=\omega^{2} r^{3}$

$$
G M=\omega^{2} r^{3}
$$

In the case of earth's orbit about the sun, we see

$$
G M=(2 \pi / \text { Year })^{2} * \text { A.U. }{ }^{3} .
$$

Kepler's Third Law

Orbital Period T is given by
$T=2 \pi\left(a^{3} / G M\right)^{1 / 2}$
Where $a=k$ A.U..
Substitute
(2π / Year) ${ }^{2 *}$ A.U. ${ }^{3}$ for GM and kA.U. for a ,
$T=2 \pi\left((k \text { A.U. })^{3} /\left((2 \pi / \text { Year })^{2} \text { * A.U. }{ }^{3}\right)^{1 / 2}\right.$
$T=2 \pi\left(k^{3 *}(\text { Year } / 2 \pi)^{2}\right)^{1 / 2}$
$T=k^{3 / 2}$ Years

$$
T=k^{3 / 2} \text { Years }
$$

Kepler's Third Law:

Orbital period is proportional to length of semi major axis raised to $3 / 2$ power.

The number of astronomical units of the semi-major axis raised to the 3/2 power gives the number of years a body takes to orbit the sun. This comes from Kepler's Third Law.

Area Of A Circle

Slice a circle into six wedges

 and re-arrange.You have a shape that's a bit more than a parallelogram with sides $3 r$ by r.

Slice the circle into finer wedges and re-arrange.

The finer the wedges, the closer the circle is to a rectangle having sides r and πr. π is a little more than 3 . It's about 3.14
O
π is a number a little more than 3 , about 3.14. It's spelled "pi" and pronounced "pie", like delicious apple pie.
The area of a circle is $\pi r \times r$ which is πr^{2}.
A circle of radius 10 units has area of about 3.14×10^{2} square units, which is 314 units 2.

Snip off the shorter string segment and put it on the other side and you'll see the string length is $2 a$, the length of the ellipse's major axis.

b and ea are legs of a right triangle with hypotenuse a.

From the
Pythagorean
Theorem, page 21:
$(e a)^{2}+b^{2}=a^{2}$
$b^{2}=a^{2}-(e a)^{2}$
$b^{2}=\left(1-e^{2}\right) a^{2}$
$b=\left(1-e^{2}\right)^{1 / 2} a$
$=\left(1-e^{2}\right)^{1 / 2} a$

An ellipse can be thought of as a circle shrunk along one of it's diameters.
Thus the area of the ellipse is the area of the circle shrunk by the same factor. Specific angular momentum $|\mathbf{r} \times \mathbf{v}|$ is twice area ellipse over orbital period.

00

$\boldsymbol{\omega}$ is the Greek lower case letter omega.

The symbol ω is often used to denote angular velocity in radians covered over a period of time.

A full circuit is 2π radians
Examples:
The second hand on a clock has $\omega=2 \pi$ radians $/$ minute
The minute hand on a clock has $\omega=2 \pi$ radians $/$ hour

The hour hand on a clock has $\omega=2 \pi$ radians $/ 12$ hours

Speed is angular velocity in radians times r where r is distance from center of rotation.

$\mathbf{v}=\boldsymbol{\omega} \mathbf{r}$

All portions of a second hand are moving the same angular velocity, 2π radians per minute.

But the outer parts of the second hand are moving faster than the parts closer to the center of rotation.

We've been using canonical units based on earth's orbit around the sun.
But we can also choose canonical units based on any circular orbit around any body. Kepler's Third Law still applies.

Here we'll switch gears and base our units on Earth's geosynchronous orbit.

We set our unit of length, $R_{g^{\prime}}$ to the radius of geosynchronous orbit.
$R_{g}=42,300$ kilometers.
Orbital period T is one sidereal day,
$T=23$ hours 56 minutes.
For this discussion
we'll just call that a day.

$$
T=1 \text { day }
$$

Moon's orbital radius is $384,400 \mathrm{~km}$. $384,400 / 42,300=\sim 9.08$

$$
\begin{gathered}
\text { A lunar distance } \\
\text { is about } 9 \mathrm{R}_{g} \\
9^{3 / 2}=\left(9^{1 / 2}\right)^{3}=3^{3}=27 \\
\text { And, indeed, } \\
\text { the moon's orbital period } \\
\text { is close to } 27 \text { days. }
\end{gathered}
$$

So we know the eccentricity of the conic payload follows when released from the elevator. This plus the fact that release point is at either periapsis or apoapsis of the orbit allows us to draw a family of conics associated with the elevator

Z ero $R_{\text {cuan }} V_{\text {ant }}$ T ransfer rbit

Anchor a vertical elevator on the Martian moon Deimos.
Between Deimos circular orbit and Mars' center
there are ellipses of every eccentricty between 0 and 1.
Anchor an elevator at the Martian moon Phobos.
Between Phobos circular orbit and the parabola there are also ellipses of every eccentricity between 0 and 1.

Do the Phobos and Deimos elevators share an ellipse?

Overlapping the two families of conics, the moiré pattern seems to indicate a shared ellipse.
At periapsis a payload traveling along this elliptical orbit would have the same relative velocity as the rendezvous point on a Phobos elevator. At apoapsis the payload would have the same relative velocity as the rendezvous point on a Deimos tether.

Using this Zero Relative Velocity Transfer Orbit the two moons could exchange payloads using virtually zero reaction mass.

Paul Penzo, a JPL engineer, talked about this possible path between
Deimos and Phobos elevators back in 1984. Above is Penzo's illustration from that paper.
I believe ZRVTO is a term coined by Marshall Eubanks who is also an advocate of PAMSE -- Phobos Anchored Mars Space Elevator.

A floating ball head is wearing a dunce cap/mosquito net. Where the ocean meets the mosquito net is an ellipse. Where the ball head touches the water is a focus. Where the fish kisses the air is a focus. The ball head's hat brim is a directrix plane as is the fish's belt plane. Where the directrix planes meet the ocean surface are two lines called directrix lines.

Each radius of a circle has length r.
A line tangent to the circle is at right angles to the radius it touches. by the Pythagorean theorem:
$e^{2}+r^{2}=f^{2} \quad e^{2}=f^{2}-r^{2}$
$g^{2}+r^{2}=f^{2} \quad g^{2}=f^{2}-r^{2}$
$e=\mathbf{g}$
Two such line segments on tangent lines whose end points meet are equal.

These lines tangent to a sphere meet at a point. The lines are called elements of a cone.

The bold line segments are all equal. Each line segment is a leg of a right triangle, the other leg being a circle radii of the sphere. All the right triangles share the same hypotenuse.

The equality of line segments whose ends meet, that lie on lines tangent to the sphere and having an end lieing on the sphere, is a tool in use of Dandelin Spheres.

If $a=b$ and $c=d$, then $a-c=b-d$.
Each rib of the above lamp shade ia a line segment equal to each other rib.

Dandelin spheres show that two descriptions of the ellipse do indeed describe the same thing.

Drop a line segment straight down from the directrix plane to a point on the ellipse.
The cone element line segment to the point is the same length as the point's distance to focus. All cone elements meet the directrix plane at angle α. The cutting plane meets the directrix plane at angle β.

The line straight down from the directrix is a fold in a triangle having angles α and β.
All these triangles are similar, having the same proportions.
Since distance to focus and distance to focus are always sides of similar triangles, the ratio of these two lengths remain constant.

Pages $3,4 \& 5$ we looked at conics in terms of distance from a point and a line.
Pages 10 and 11 we looked at conics in terms of distance from two points.
Now we will look at conics in terms of distance from two lines.
The vertical line we call the y axis, the horizontal line we call the x axis.
Above is a picture of a parabola. Can you see a pattern?

| $(-3,9)$ | | | y | | $(3,9)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Above is the more usual way of showing a parabola on a Cartesian grid.
When (x, y) coordinates are given, the first gives horizontal distance from the y axis, the second coordinate gives vertical distance from the x axis. Going to the left or going down is given a minus sign.

The vertical and horizontal distance can be seen as legs of a right triangle.
Distance from the origin $(0,0)$ to a point is the hypotenuse of this right triangle.
All these points are 5 units away from the origin.
$x^{2}+y^{2}=5^{2}$ describes a circle with radius 5 .

Remember on page 9 how a hyperbola gets closer and closer to the asymptotes?

As an object falls towards Earth, it moves faster and faster. At the closest point to the Earth, the perigee, it's moving at top
speed. As it moves away, Earth's gravity pulls it, slowing it down. As the hyperbola gets closer to the asymptote, the speed gets closer and closer to \checkmark infinity, the speed the object would have at an infinite distance from Earth.

After a few million kilometers from the Earth, it is moving so close to \checkmark infinity, the difference is negligible.
> \checkmark infinity is also called the hyperbolic excess speed.

We zoom out some more.

What is this?
The so called "straight lines" are starting to gently curve.

What's going on here?

We're entering a scale where the tiny Earth's influence is barely visible, but we can start to see the effects of the much larger sun.

We zoom out even more and switch reference frames.
No longer is the Earth our center. The hyperbola with regard to Earth becomes a tiny germ sitting on a much larger curve:
The sun centered Earth to Mars Hohmann ellipse we saw on page 13.

The 3 kilometers $/ \mathrm{sec}$ difference between the ellipse's perihelion velocity around the sun and Earth's circular orbit velocity around the Sun is the Vinfinity for the hyperbola with regard to Earth.

If we zoom in with a microscope and switch reference frames to Mars centered, we'd see another tiny hyperbola with regard to Mars

The further from a planet, the slower a circular orbit

At a given altitude, $V_{\text {esc }}=2^{1 / 2} \times V_{\text {circ }}$.
The square root of 2 is about 1.414.
For a right isosceles triangle, the hypotenuse is $2^{1 / 2} x$ the length of each of the two equal legs. Likewise,
$V_{\text {hyp }}{ }^{2}=V_{\text {esc }}{ }^{2}+V_{\text {inf }}{ }^{2}$.
Remember the Pythagorean Theorem on pages 22 and 23?
Using the Pythagorean Theorem and the memory device to the right, it's not hard to remember the relationships between $\mathrm{V}_{\text {circ }}, \mathrm{V}_{\text {esc }}, \mathrm{V}_{\text {hyp }}$ and $\mathrm{V}_{\text {inf }}$.

The semi major axis of a hyperbola is often denoted with the letter a. This is a negative number. A hyperbola's eccentricity is often labeled e.

Each speck of matter pulls other specks. You can think of gravity as each speck sending out tractor beams

More specks, more "tractor beams".
The more mass, the stronger the pull. A body's pull is $G \times$ mass.
G is always the same, Mass is the amount of matter in a body.

At distance $r=1$, there's 1 tractor beam per square unit.
Double the distance, there's 1 beam per 4 square units

Triple the distance, 1 beam per 9 square units.
Gravity's pull gets weaker with distance. Acceleration from gravity is μ / r^{2}.
$1 / r^{2}$ is called the inverse square. Gravity falls with the inverse square or r.

Objects closer to the gravitating body move faster while objects farther away move slower.

The coin funnels you sometimes see at shopping malls can give a feel for orbits. The coin rolls slowly as it starts its path at the edge and coins closer to the center move fast.
Orbiting objects closer don't spiral in, though. Unless it's close enough to earth to feel drag from the earth's atmosphere.

Kinetic energy $=\frac{1}{2} m v^{2}$

Kinetic energy goes with the square of velocity. Double your speed and you'll quadruple your kinetic energy.
KE also goes with mass. $m=$ mass of the moving object.
$\mathrm{V}_{\mathrm{b}}=$ velocity added by a rocket burn.
If you make a burn to accelerate a rocket while going fast, you get more kinetic energy.
This is known as the Oberth
benefit.
Thus you get more bang for your buck doing a burn when you're closer to a planet and moving faster.

High earth orbits are relatively slow and low earth orbits move faster.

So a fellow who calls himself Rune was telling me it's better to depart from LEO (Low Earth Orbit) when heading for Mars.
"What about Mr. Oberth?" Rune asked me.

I'm going so slow that a small tap of my brakes kills most my speed and I start falling towards earth.

I pick up speed as I fall towards perigee (the closest point to earth in my new orbit).

I catch up to Rune at just a hair under escape velocity - $10.9 \mathrm{~km} / \mathrm{s}$. Rune is moving $7.7 \mathrm{~km} / \mathrm{s}$. A perigee burn would get me nearly twice the Oberth benefit Rune's LEO burn would give.

The Farquhar Route from EML2 to LEO

At a 200 km perigee, the ship is moving nearly $11 \mathrm{~km} / \mathrm{s}$. At this speed another $.6 \mathrm{~km} / \mathrm{s}$ is enough for TMI (Trans Mars Insertion). EML2 to TMI is $\sim 1 \mathrm{~km} / \mathrm{s}$

This route was discovered by NASA engineer Robert Farquhar in the early 1970s.

"What's EML2?" you might ask.

 EML2 is the 2nd Earth Moon Lagrange Point. There are 5 such points.These are where the moon's gravity, earth's gravity and centrifugal force all cancel out.

For the EML2 tug-of-war, Earth's gravity \& Moon's gravity are on the same team against centrifugal force Stuff parked at EML4 \& 5 tend to stay put.
EML1, 2 \& 3 are quasi stable. Stuff parked there will stick around with a small station keeping expense.
In terms of orbital energy, EML2 is the closest to escape.

The Rocket Equation:

Mass fraction propellent $=1-e^{\text {-deta V V/exhuust velocitry. }}$ Here the letter e doesn't refer to eccentricity but rather Euler's number, a number discovered by Leonhard Euler. The number e is about 2.72

Let's say our delta V budget
is $3 \mathrm{~km} / \mathrm{s}$
and we're using oxygen/hydrogen bipropellent with an exhaust velocity of $4.4 \mathrm{~km} / \mathrm{s}$.
$e^{-(3 \mathrm{~km} / \mathrm{s}) /(4.4 \mathrm{~km} / \mathrm{s})}=e^{-3 / 4.4}$
$=.5057$ (about 1/2)
A $3 \mathrm{~km} / \mathrm{s}$ rocket is about $1 / 2$ propellent by mass.

To meet mass fraction constraints, aerospace engineers have designed staged rockets.
Dry mass is thrown away enroute.
Could you imagine how much a transcontinental flight would cost if we threw away a 747 each trip?

The cartoon to the right is somewhat dated. As of this writing (2019) Jeff Bezos' Blue Origin and Elon Musk's SpaceX seem well on their way to making economical, reusable boosters.

But upper stages remain expendable (in other words, disposable).

In a world with no gas stations...

After the tanker fuel is used up, the tank and large engine is dead weight that uses up too much fuel.

It's thrown away

After the pickup does it's part, it's tossed.

The VW bug meets the same fate...

And the motorcycle gets flushed. For decades this has been the way to reach destinations.

A severe hurricane is about 3 kilo pascals. Typical Max Q for a rocket's ascent is about 35 kilo pascals. Moving orbital velocity at sea level inflicts about 35,000 kilopascals.

GRAVITY LOSS

Gravity loss is at a maximum when rocket acceleration vector points straight up.

Gravity cancels out some of a rocket's upward acceleration.

Earth surface gravity: $9.8 \mathrm{~m} / \mathrm{sec}^{2}$.

102 seconds vertical ascent means 1 km/s gravity loss.
To minimize gravity loss, ascent needs to be as fast as possible.

For ascent we want to maximize thrust \& acceleration.

A booster stage will typically have more rocket engines than an upper stage.

THRUST/WEIGHT RATIO (T/W)

The ship hovers in place. It never gets off the ground.

T/W = 2
It takes the ship 143 seconds to reach the Karman Line.
a $7.7 \mathrm{~km} / \mathrm{s}$ orbit. Getting altitude isn't the problem -It's going sideways fast." This argument ignores gravity loss and a booster's need for extra thrust. A booster stage to get above the Karman line can easily be $2 / 3$ of a rocket's cost.

THE MYTH OF 30X - The Tier One Project won the $\$ 10$ million Ansari X-Prize in 2004 when they made two suborbital trips within 5 days with a reusable manned rocket. Some said "Big deal. Potential energy at the Karman line is only $1 / 30$ of the kinetic energy of

Thrust vs Exhaust Velocity

A rocket with higher exhaust velocity can achieve more delta V with a lower propellent mass fraction. High ISP propellent is desirable.

However high thrust is also desirable. We need a high trust to weight ratio to climb above earth's atmosphere without exorbitant gravity loss.

Sadly thrust goes down when exhaust velocity goes up. To the right is a graph showing an ideal ion engine's thrust to power for different exhaust velocities.

Best chemical exhaust velocity is around $4 \mathrm{~km} / \mathrm{s}$ while ion engines can sometimes do up to $30 \mathrm{~km} / \mathrm{s}$ \& higher.
However with their very low thrust it can take an ion rocket a loooong time to do a burn.

To the right an ion rocket starts at a 400 km altitude circular orbit and accelerates at
$1 \mathrm{~mm} / \mathrm{sec}^{2}$. I \dagger will take it 75 days and more than 345 revolutions about the earth to reach an altitude of $300,000 \mathrm{~km}$, near the moon's Hill Sphere. A trip a chemical rocket could make in 4 days.

Ion engines can have a much higher exhaust velocity but with the lower acceleration it takes much longer to achieve a change in
velocity. Since much of the acceleration is done higher on the slopes of a planetary gravity well, there is less Oberth benefit.

What's a milliNewton?

A newton is a unit of force. And force is mass times acceleration.
1 newton $=1$ kilogram * 1 meter $/$ second ${ }^{2}$.
A millinewton is $1 / 1000$ of a newton.
1 millinewton $=1$ gram * 1 meter $/$ second ${ }^{2}$.
A dollar bill has a mass of one gram.

Besides weight, newtons and millinewtons also measure a rocket's thrust.

What's acceleration?

Acceleration is change in velocity over time. Units can be (meters/second)/second. Which is meters/second ${ }^{2}$, or $\mathrm{m} / \mathrm{s}^{2}$ for short. A 2019 Corvette ZR1 goes from zero to sixty miles per hour in 2.85 seconds (60 miles/hour) / 2.85 seconds $=(60$ * 1609 meters $/ 3600$ seconds) 2.85 seconds
$=9.4$ meters $/$ second $^{2} .1$ earth gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ so passengers feel just short of 1 g acceleration when the driver puts the pedal to the metal.

0 to 60 mph in
 2.85 seconds

The plume of ionized xenon coming from an XR-100 Hall Thruster is a beautiful thing. The ionized xenon atoms go in different directions
at different speeds but the effective exhaust velocity ranges from 16 to $32 \mathrm{~km} / \mathrm{s}$.
The XR-100 gives up to 5 newtons of thrust and masses 230 kg . 5 newtons $/ 230 \mathrm{~kg}$ is about $21 \mathrm{~mm} / \mathrm{s}^{2}$ acceleration. That seems decent.
But we also need a 100 kilowatt power source.
That can be another $1,400 \mathrm{~kg}$. Add to that structure and avionics, power processing unit and payload and dry mass can total 4000 kg .
Let's say you want an $11 \mathrm{~km} / \mathrm{s}$ delta V budget. At maximum thrust and $16 \mathrm{~km} / \mathrm{s}$ exhaust velocity, that's another 4000 kg of xenon.

That's around $.6 \mathrm{~mm} / \mathrm{s}^{2}$ for a craft full of xenon and around $1.2 \mathrm{~mm} / \mathrm{s}^{2}$ when xenon's nearly depleted.
A lower mass power source is desirable.

Alpha is a measure of how much mass it takes to generate power.
In 2011 Franklin Chang Diaz caused quite a stir when he claimed his VASIMR ion engine could get men to Mars in 39 days. A typical Hohmann trip to Mars is around 8.5 months.
However Diaz' claims relied on an alpha of .5 kilograms per kilowatt electricity. Kirk Sorensen,
Robert Zubrin and others have said such a high power, low mass power source isn't doable.
What is a
$.5 \mathrm{~kg} / \mathrm{kWe}$ alpha?
I try to portray it to the right.
A Ford Focus is 160 horsepower which is 120 kilowatts.
Dominique is 60 kilograms.
That's $.5 \mathrm{~kg} / \mathrm{kW}$. Dominique must also do the work of the gasoline and oxygen the engine burns.
There are no gas stations or charging stations on the way
to Mars. Nor is
there an oxygen atmosphere.
Is such a power source impossible?
I hope not. It's certainly something to strive for.

Besides chemical and ion rockets there is also the

 possibility of Nuclear Thermal Rockets.It is easier to produce thermal watts than electric watts. So these can have a very good alpha (see page page 59). A megawatt per each 6.5 kg is possible.
Exhaust velocity can be $8.8 \mathrm{~km} / \mathrm{sec}$, about twice as fast as the best chemical rockets but about one third that of ion thrusters.
Thrust is not quite as good as chemical but much better than ion. It is sufficient to quickly climb out of a planetary gravity well and enjoy a healthy Oberth benefit. Chemical is better for making the ascent from a planetary surface.

POTENTIAL PROPELLENT SOURCES

Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ can be cracked into hydrogen \& oxygen, one of the best bipropellants. Carbon dioxide $\left(\mathrm{CO}_{2}\right)$ can be cracked into carbon and oxygen. Carbon and hydrogen can make methane $\left(\mathrm{CH}_{4}\right)$, one of the more storable rocket fuels. These can be found in various places.

Some Near Earth Asteroids

 (NEAs) are thought to be 40\% water by mass in the form of hydrated clays.NEAs in heliocentric orbits have rare launch windows and long trip times.
However they can be nudged into loose lunar capture orbits where they would enjoy short trip times and frequent launch windows, just like the moon.
There are NEAs within . 2 km / s of EML2.

Most of these delta Vs are figured using two equations:
The Vis-Viva equation: $V^{2}=G M(2 / r-1 / a)$ and Velocity of Hyperbolic Orbit: $V_{\text {hyp }}{ }^{2}=V_{\text {esc }}{ }^{2}+V_{\text {inf }}{ }^{2}$. The $3.5 \mathrm{~km} / \mathrm{s}$ number from EML2 to LEO assumes the Farquhar Route (page 51).
The $1.6 \mathrm{~km} / \mathrm{s}$ from EML2 to Mars Capture assumes using the Farquhar Route (page 51) and then doing the Trans Mars Injection (TMI) burn at LEO when the ship is moving $11 \mathrm{~km} / \mathrm{s}$.

The $1.2 \mathrm{~km} / \mathrm{s}$ number from EML2 to Venus capture also assumes the Farquhar Route and enjoying a healthy Oberth benefit (pages 49 \& 50) for the near Earth burn when the ship's moving $11 \mathrm{~km} / \mathrm{s}$.

Ascending from Venus' surface through the thick atmosphere would take lots of delta V, hence the $20 \mathrm{~km} / \mathrm{s}$ from Venus surface to Landis Land. Landis Land is my term for a potentially habitable layer of Venus' atmosphere where pressure and temperature is human friendly. Balloon cities filled with nitrogen and oxygen would be buoyant in Venus' mostly carbon dioxide atmosphere.

The numbers mostly assume Hohmann transfers with impulsive chemical burns. I also assumed circular, coplanar orbits which simplifies calculations but lessens accuracy. The numbers are ball park estimates.

Helpful Websites and Books

Orbital Mechanics: http://www.braeunig.us/space/orbmech.htm Nice orbital mechanics resource

Encyclopedia Astronautica: http://astronautix.com Detailed descriptions of various rocket engines including thrust \& exhaust velocity, history, more.

Astrogator's Guild: https://see.com/astrogatorsguild/
Professional astrogators Mike and John talk about space exploration
Atomic Rockets: http://www.projectrho.com/public_html/rocket/ Great resource for space enthusiasts and writers of hard science fiction.

Blog on science fiction and space exploration: http://toughsf.blogspot.com
Matter Beam explores various hard science fiction ideas
Blog on space exploration: https://selenianboondocks.com Jonathan Goff's blog on possible space technologies
http://spaceflighthistory.blogspot.com
Space historian David F. Portree's informative blog
Sarmount's Opening the High Frontier: http://www.high-frontier.org/author/eaglesarmont/ Sarmount suggested vertical skyhooks in the 1990's.

Moonwards, advocates of lunar settlement: https://www.moonwards.com Kim Holder and friends explore possible benefits lunar development could offer
https://newpapyrusmagazine.blogspot.com
Marcel Williams' thoughts on space exploration and lunar development
A forum on space exploration: https ://forum.nasaspaceflight.com
News and discussion of space exploration
A forum on space exploration: https://www.reddit.com/r/space/
News and discussion of space exploration
Fragomatik's beautiful Youtube channel on plausible hard science fiction scenarios:
https://www.youtube.com/channel/UCOLioOoKOm+WiIlosl_YB1Q
Space Stack Exchange: https://space.stackexchange.com Questions and answers on space exploration

Orbiter: http://orbit.medphys.ucl.ac.uk
A space flight simulator
Kerbal Space Program: https://www.kerbalspaceprogram.com
A game that teaches orbital mechanics
Scott Manley's YouTube Channel: https://www.youtube.com/user/szyzyg/featured Kerbal Space Program tutorials and more
Fundamentals of Astrodynamics by Bate, Mueller and White An inexpensive textbook on orbital mechanics
Nick Stevens space graphics: https://nick-stevens.com/the-artist/professional-work/
Some great illustrations and videos of possible spaceships.
The Worlds of David Darling: http://www.daviddarling.info Lots of info on music, history, science and math

Mining The Sky by John S. Lewis
Possible resources from the asteroids
Rain of Iron and Ice by John S. Lewis
The possibility of destruction from asteroid impacts

